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Abstract—By transforming data into binary representation,
i.e., Hashing, we can perform high-speed search with low storage
cost, and thus Hashing has collected increasing research interest
in the recent years. Recently, how to generate Hashcode for
multimodal data (e.g., images with textual tags, documents with
photos, etc) for large-scale cross-modality search (e.g., searching
semantically related images in database for a document query)
is an important research issue because of the fast growth of
multimodal data in the Web. To address this issue, a novel
framework for multimodal Hashing is proposed, termed as
Collective Matrix Factorization Hashing (CMFH). The key idea
of CMFH is to learn unified Hashcodes for different modalities
of one multimodal instance in the shared latent semantic space
in which different modalities can be effectively connected. There-
fore, accurate cross-modality search is supported. Based on the
general framework, we extend it in the unsupervised scenario
where it tries to preserve the Euclidean structure, and in the
supervised scenario where it fully exploits the label information of
data. The corresponding theoretical analysis and the optimization
algorithms are given. We conducted comprehensive experiments
on three benchmark datasets for cross-modality search. The
experimental results demonstrate that CMFH can significantly
outperform several state-of-the-art cross-modality Hashing meth-
ods, which validates the effectiveness of the proposed CMFH.

Index Terms—Hashing, Multimodal Data, Collective Matrix
Factorization, Cross-modality Search, Scalability, Optimization

I. INTRODUCTION

HOW to index large-scale data collection for nearest

neighbor (NN) retrieval is an important research topic

in data engineering and database system communities. The

purpose of nearest neighbor retrieval is to find the p nearest

neighbors (say, 50) for a query q in a data collection with

n instances based on the distance between their vectorial

representations. NN retrieval plays fundamental role in several

machine learning algorithms, such as kNN classifier [1],

spectral clustering [2], and manifold learning [3]. Obviously,

it becomes computationally costly and impractical when the

retrieval is performed by computing Euclidean distance using

floating-point operation between query and all database in-

stances when n is large. Therefore, we need to design specific

techniques to reduce the computational cost for NN retrieval.

One well developed paradigm is based on trees, such

as kd-tree [4]. For low-dimensional data, tree can provide

logarithmic complexity (O(log n)). However, due to the curse

of dimensionality, tree will degenerate to exhaustive linear
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scan such that the computation is barely reduced [5]. Another

celebrated paradigm is Hashing [5]. Different from trees,

Hashing focuses on speeding up the operation for computing

distance. Hashing transforms the data from original feature

space to binary space and represents data by binary codes (i.e.,

Hashcodes). Given appropriate designs, the distance between

original features can be well approximated by the Hamming

distance (the number of different bits between binary codes).

In modern CPU architecture, the Hamming distance can be

computed by simple bit operations which is far faster than

floating-point operations. In fact, Hashing is quite efficient for

NN retrieval even though it needs to scan the database. Based

on binary codes, the storage cost is significantly reduced.

For example, we just need 16MB memory to store 1 million

instances represented by 128-bit Hashcodes. Besides, Hashing

can deal with high-dimensional data. Due to the efficiency in

handling large-scale database, Hashing has drawn considerable

research interest from academia and industry in recent years.

Locality Sensitive Hashing (LSH) [5] is the seminal work

in Hashing. LSH has solid theoretical foundation, but it needs

long Hashcodes for good performance in practice as it is data-

independent [6]. To obtain compact Hashcodes, the informa-

tion in data should be taken into consideration. Therefore,

several machine learning techniques have been utilized to

design data-dependent Hashing [7], such as Principle Com-

ponents Analysis, Kmeans Clustering, Manifold Learning,

Supervised Learning, Semi-supervised Learning, Deep Learn-

ing, which respectively lead to PCA Hashing [8], Kmeans

Hashing [9], Spectral Hashing [10], Supervised Hashing [11],

Semi-supervised Hashing [12], and Semantic Hashing [13].

Above Hashing methods focus on unimodal data, i.e., they

can only deal with data or feature in a single type (text,

image, etc). But the rapid development of Web, like news

websites and social websites, has witnessed the growth of

multimodal data, such as a news report with pictures, a photo

with user-annotated tags. As mentioned in [14] and [15], cross-

modality retrieval with multimodal data is becoming popular

in recent years. The goal of cross-modality retrieval is to obtain

semantically related data in one modality for a query in another

modality. For example, with a textual query, the user hopes

to get not only documents, but also some images or videos

related to the query. And given an image query, it is much

better if the system can return some descriptive documents

related to the image than just returning some visually similar

images. However, because of the heterogeneity of different

feature types for different modalities (e.g., the features for text

and images have different physical meaning, dimensionality,

probability distribution, and etc.), it is very difficult, if not
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Fig. 1: The difference among three frameworks.

impossible, to directly measure the distance (or similarity)

between features. Therefore, unimodal methods mentioned

above are almost infeasible for the cross-modality retrieval.

To manage the emerging multimodal data, researchers have

tried some cross-media retrieval strategies, such as cross-media

learning to rank [16] and mutual topic reinforce modeling [17].

Furthermore, to facilitate large-scale search, several multi-

modal Hashing methods have been proposed and they have

achieved some promising results. Existing multimodal Hash-

ing methods fall into the following two frameworks, modality-

specific Hashing and integrated Hashing. Modality-specific

Hashing (MSH) methods learn separate Hashcodes and the

corresponding Hashing functions for different modalities of

one instance. Then the Hashcodes of a multimodal instance is

constructed by concatenating the Hashcodes of each modality.

Besides, some specific designs are incorporated into Hashing

function learning such that connection between modalities can

be established for cross-modality retrieval. Because Hashing

function for each modality is learned, MSH methods can

construct Hashcodes for any modality. And they make efforts

to connect different modalities. Hence, they can perform

cross-modality retrieval. However, existing MSH methods fail

to make full use of the multimodal data and only weak

connection between modalities is build. On the other hand,

integrated Hashing (IH) methods construct unified Hashcodes

for multimodal instances and Hashing functions combining

all modalities are learned. By combining more information,

IH methods may achieve better retrieval performance for

multimodal data. However, they require all modalities of one

instance for generating Hashcodes, which is too demanding

in real-world applications. In addition, they cannot generate

Hashcodes for instance having partially missing modalities.

In this paper, we propose a novel framework for multimodal

data, termed as Collective Matrix Factorization Hashing

(CMFH). Fig. 1 illustrates the difference between CMFH

and two existing frameworks mentioned above. Specifically,

CMFH assumes that all modalities of one instance should

share the same Hashcodes because they have the same se-

mantics. Hence, CMFH learns unified Hashcodes for different

modalities of one instance in the shared latent semantic space

by collective matrix factorization, which can make full use of

multimodal data and effectively construct strong connection

between modalities such that excellent cross-modality retrieval

performance is achieved. This is intrinsically different from

MSH. At the same time, the Hashing functions for each modal-

ity are also learned which can generate the final Hashcodes

individually given the corresponding modality. So CMFH can

handle instance with partial-missing modalities, which fixes

the flaw of IH. This paper makes the following contributions

• We propose a novel framework CMFH for multimodal

data which learns unified Hashcodes for different modal-

ities of one instance in the shared latent semantic space

via collective matrix factorization. CMFH can effectively

connect different modalities and the learned Hashing

functions for each modality can generate Hashcodes for

instance with partial-missing modalities, which can result

in excellent cross-modality retrieval performance. CMFH

is intrinsically different from and makes significantly

improvement on the existing MSH and IH frameworks.

• With the general CMFH framework, we extend the un-

supervised version (UCMFH) and the supervised version

(SCMFH). When labels are unavailable, UCMFH inte-

grates a linear embedding with CMFH. Based on approx-

imate bi-Lipschitz continuity, the learned Hashcodes can

preserve the Euclidean structure in each modality. On the

other hand, SCMFH incorporates some classifier-like loss

into CMFH, which can fully exploit the label information.

• For both UCMFH and SCMFH, we propose effective

optimization algorithms respectively. In addition, we pro-

vide corresponding theoretical analysis for them in detail.

• We carried out experiments on three benchmark datasets

for cross-modality retrieval and compared CMFH with

several state-of-the-art related methods. The results show

the superiority of CMFH, which verifies its effectiveness.

The rest of this paper is organized as follows. We start

by some preliminaries and related works in Section II. The

proposed CMFH framework is introduced in Section III. In

Section IV and V, we present the unsupervised and supervised

versions of CMFH respectively, and the corresponding opti-

mization algorithms and theoretical analysis are also provided

in detail. Our comprehensive experiments are presented in

Section VI, and at last we conclude our work in Section VII.

II. PRELIMINARY AND RELATED WORK

A. Preliminary and Notation

A multimodal instance is denoted as oi = {xt
i}, where

xt
i ∈ X t is from the t-th modality (feature space). We generate

Hashcodes for it as bi = {bt
i}, where bt

i ∈ {−1, 1}k and

k is the length of Hashcodes1. As introduced above, MSH

methods obtain the multimodal Hashcodes by concatenating

the Hashcode of each modality, i.e., bi = [b1

i , ...,b
t
i], while

IH methods generate unified Hashcodes, i.e., bi = b1

i = bt
i.

For out-of-sample data2, MSH methods learn Hashing function

1In practical implementation, we use {0, 1} as Hashcodes. In fact, these
two representations are intrinsically equivalent. The transformation is achieved
by setting −1 to 0. Here we use {−1, 1} for the convenience of discussion.

2The out-of-sample data is the one not in the training set. For generating
their Hashcodes, we need to learn explicit Hashing functions when training.
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for each modality individually, i.e., bt
i = ht(xt

i), while IH

methods generate Hashcodes by adopting a unified Hashing

function with all modalities as input, i.e., bi = h(x1

i , ...,x
t
i).

Without loss of generality, hereafter we assume the data is

zero-centered, i.e., we have
∑n

i=1
xt
i = 0 for any modality t.

The cross-modality retrieval can be described as follows.

We have a database storing the Hashcodes of instances from

one modality {bt1
1
, ...,bt1

n }. Then given a query from another

modality xt2
q where t1 6= t2, we generate its Hashcode as

bt2
q = ht2(xt2

q ) and then compute the Hamming distance

between bt2
q and bt1

i (i = 1, ..., n). Finally, the database

instances are sorted by their Hamming distance to the query

and the ones with smaller distance are first returned. We can

observe from the procedure that we need to take the following

two problems into account at training stage. First, we need to

build effective connection between modalities such that the

distance computing between their Hashcodes is meaningful.

One important principle here is to generate similar Hashcodes

for instances with similar semantics. Second, we need to learn

explicit Hashing functions for each modality in order to handle

instances with partial-missing modalities. IH methods do better

in the first problem while MSH methods can address the

second one effectively. However, MSH and IH fail to work

out both simultaneously. Some frequently used notations and

their corresponding descriptions are summarized in TABLE I.

B. Modality-specific Hashing

MSH methods learn separate Hashing functions for each

modality. Because of the explicit Hashing functions, MSH

methods can cope with out-of-sample instances with partial-

missing modalities. To connect different modalities, intra-

modality and inter-modality similarity are both considered.

Cross-view Hashing (CVH) [18] designs a set of Hashing

functions to preserve the similarity between instances. Given

a similarity matrix S ∈ R
n×n where Sij denotes the similarity

between oi and oj which can be defined in a supervised or

an unsupervised manner. The learning objective of CVH is to

minimize the cumulative Hamming distance for training data,

min O =
∑

ij

Sij

∑

t1

∑

t2≥t1

‖bt1
i − bt2

j ‖2F

s.t.
∑

i

bt
i = 0,

∑

i

(bt
i)

′bt
i = nI, ∀t

(1)

where ‖ · ‖F represents the Frobenius norm of a vector and

the orthogonality constraint on each modality is imposed to

remove redundancy in the learned Hashcodes. As 1) the above

function cannot generate explicit Hashing functions, and 2) the

binary constraints make the problem NP-hard [10], a linear

relaxation is adopted which 1) assumes a linear projection

matrix Wt ∈ R
dt×k, and 2) removes the binary constraints:

min O =
∑

ij

Sij

∑

t1

∑

t2≥t1

‖xt1
i Wt1 − xt2

j Wt2‖2F

s.t.
∑

i

xt
iW

t = 0,
∑

i

(xt
iW

t)′xt
iW

t = nI, ∀t
(2)

Above problem can be solved by generalized eigenvalue

decomposition in polynomial time [19]. For the out-of-sample

data xt, we can generate its Hashcodes by bt = sign(xtWt).

TABLE I: Notations and descriptions.

Notation Description Notation Description

X data matrix n #samples

Y label matrix d #features

B binary Hashcode k #Hashcode

W,P projection matrix c #class

U,V latent factors t #modality

S similarity matrix α, µ, γ parameters

CVH is a representative work in MSH. Several MSH

methods have the similar idea to CVH, i.e., they focus on

building connection between different modalities such that

Hashcodes from different modalities are comparable. Cross-

modality Similarity-sensitive Hashing (CMSSH) [20] aims to

maximize the correlation between Hashcodes from different

modalities. Co-regularized Hashing (CRH) [21] considers the

intra-modality loss and inter-modality correlation simultane-

ously. Both methods are solved under boosting framework.

Inter-media Hashing (IMH) [14] defines the intra-modality

and inter-modality consistency. A regularized linear regression

model is adopted to preserve the consistency. In Semantic

Correlation Maximization Hashing (SCMH) [15], semantic

label information is utilized and the learned Hashcodes are

required to preserve such information. An orthogonal learning

algorithm and a sequential learning algorithm are put forward.

C. Integrated Hashing

IH methods need all modalities of one instance to generate

Hashcodes. One representative work is Composite Hashing

with Multiple Information Sources (CHMIS) [22]. It con-

structs unified Hashcodes of one instance by combining the

information from all sources as b = sign(
∑

t αtx
tWt),

where αt is the nonnegative weight for the t-th modality

and
∑

t αt = 1. After real-value relaxation, CHMIS jointly

optimizes similarity preserving and consistency as follows:

min O = C1

∑

ij

∑

t

St
ij‖vi − vj‖

2

F

+ C2

∑

i

‖vi −
∑

t

αtx
t
iW

t‖2F +
∑

t

‖Wt‖
2

F

s.t.
∑

i

vi = 0,
∑

i

v′
ivi = nI, αt ≥ 0

(3)

where C1 and C2 are the weight parameters to control the

trate-off between different parts, St
ij is the manifold similari-

ty [23] between xt
i and xt

j , and the last regularization term is

to avoid overfitting [24]. This problem is solved by an iterative

strategy that optimizes one variable while fixing the others.

Multi-view Spectral Hashing (MVSH) [25] is similar to

CHMIS, which combines multiple features to construct simi-

larity matrix S. And it considers the inner product between

Hashcodes as the distance measure. CHMIS and MVSH

utilize multiple features to generate unified Hashcodes for

one instance. Their Hashing functions require all modalities

as input, which is too demanding in real world applications.
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Fig. 2: Framework of CMFH, illustrated with two-modality toy data.

III. COLLECTIVE MATRIX FACTORIZATION HASHING

A. Framework Overview

The heterogeneous features from different modalities of a

multimodal instance may vary a lot and they have totally dif-

ferent physical meaning, dimensionality, statistical properties,

and etc, which makes it quite difficult to directly measure the

distance between them. But fortunately, they should have the

same semantics because they all describe the same instance.

Based on this idea, we can find the shared latent semantic

space [26] for different modalities, which is accomplished

by Collective Matrix Factorization (CMF) [27] with specific

regularization in this paper. Then the original heterogeneous

features are projected to the shared space and finally quantified

into binary codes. Since the space reflects the semantics of

features and is shared by different modalities, the distance

computing between modalities is feasible and meaningful.

Besides, we require that the latent semantic representation (and

Hashcodes) of different modalities of one instance to be iden-

tical, which can build strong and effective connection between

modalities. And we also learn specific Hashing function for

each modality such that CMFH can cope with instances with

partially missing modalities, which makes it more practical.

The framework of CMFH is illustrated in Fig. 2. It consists

of two parts, offline training and online coding. In offline

training, we use Collective Matrix Factorization to connect

different modalities and find a shared latent space for them so

that the similarity can be directly measured. To generate more

powerful Hashcodes, we incorporate different regularization

terms under different situations. By solving the objective

function, some Hashing functions are learned from training

data. In this paper, we still adopt the linear function as below

ht(xt) = sign(xtPt + at) (4)

where Pt ∈ R
dt×k is a linear projection matrix and at is an

offset vector to make the Hashcodes balanced. Because the

input data is zero-centered, we have at = 0. In online coding,

given a query data xt
q from modality t, we can generate its

Hashcodes bt
q by Eq. (4). Then we use bt

q to retrieve data of

any modalities from database based on the Hamming distance.

B. Objective Function

As we have introduced above, the key idea of the proposed

CMFH is to find the shared latent semantic space and we re-

quire the Hashcodes of different modalities of one multimodal

instance to be identical, i.e., we construct unified Hashcodes.

Matrix factorization (MF) techniques [26], [28] and their

variants have shown effectiveness for the latent semantic

analysis and achieved great success in many important works,

like heperspectral unmixing [29], [30]. Specifically, given an

original instance-feature matrix X ∈ R
n×d, MF aims to map

it to k-dimensional latent space (usually, k < d). Then we

can obtain the latent semantic representation V ∈ R
n×k for

instances and U ∈ R
k×d for features. It is shown that the

similarity measure in the latent semantic space (i.e., between

each row of V) is more effective than in the original space

(i.e., between each row of X) [26], [28]. Generally, MF is

achieved by minimizing the objective function shown below

min
U,V

L(X, g(VU)) +R(U,V) s.t. C(U,V) (5)

where L is a loss function, g is the prediction link, R is

regularization on U and V, C is the constraint on U and V.

For each modality Xt, we can factorize it to Ut and Vt.

However, if the factorizations are independent, we cannot

connect modalities. Fortunately, it is easy to see that the

“instance” is shared in each matrix Xt because they are

different modalities of the same multimodal instances. Based

on our assumption that different modalities of one multimodal

instance should have the same semantics, it is reasonable to

constrain that the latent representations of instances should

share the latent parameters [27], i.e., V1 = ... = Vt = V,

which effectively connects different modalities. With this

constraint, we can jointly factorize all modalities to find the

shared latent semantic space, which is formulated as follows,

min
Ut,V

∑

t

αt(L(X
t, g(VUt))+R(Ut,V)) s.t. C(Ut,V) (6)

which is the general framework of the proposed CMFH. By

optimizing Eq. (6), the modality-specific Hashing functions

ht can be learned at the same time. Then we can generate

Hashcodes for multimodal data for cross-modality retrieval.

Our CMFH takes advantage of the power of CMF [27] in the

following aspects. 1) It turns similarity measure from original
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feature space to latent semantic space which better captures

the semantic relationship between data. 2) By factorizing mul-

timodal data jointly, a shared space is discovered, which makes

distance computing between modalities feasible. To our best

knowledge, we are the first the apply CMF to learn Hashing

functions for cross-modality retrieval with multimodal data.

Here we formulate our CMFH to be general, in which we

can choose different prediction link g, loss function L, regu-

larization R and constraint C. Hence a user can extend it based

on the specific demand. If we use identity function for g (i.e.,

g(x) = x), squared loss for L (i.e., L(A,B) = ‖A−B‖2F ),

ridge regularization [31] for R (i.e., R(A) = ‖A‖2F ) and

no constraint, Eq. (6) becomes conventional CMF. However,

conventional CMF cannot preserve the Euclidean structure of

the features or exploit label information which are important

requirements in unsupervised and supervised Hashing respec-

tively. In the coming two sections, we will extend CMFH from

the general framework in Eq. (6) to the specific formulations.

IV. UNSUPERVISED CMFH

A. Overall Objective Function

In the unsupervised scenario, the label information is not

available. So we need to preserve the Euclidean structure of

original features, i.e., similar (dissimilar) instances should have

similar (dissimilar) latent representations [5], which is the

principle of many unsupervised Hashing methods. Formally,

given two features xt
i and xt

j from original space, and their

corresponding latent semantic representations vi and vj , pre-

serving the Euclidean structure can be formulated as below,

C1‖x
t
i −xt

j‖F − ǫ1 ≤ ‖vi−vj‖F ≤ C2‖x
t
i−xt

j‖F + ǫ2 (7)

where C1 and C2 are constants. We call it approximate bi-

Lipschitz continuity (ABC)3. The lower bound requires the

latent representations of the dissimilar pair (‖xt
i − xt

j‖F is

large) to be dissimilar, while the upper bound requires the

ones of the similar pair (‖xt
i − xt

j‖F is small) to be similar.

Now we need to incorporate proper regularization terms to Eq.

(6) such that the learned representation V satisfies the ABC.

Graph regularization [32] is a widely used regularization

for MF which can preserve the manifold structure, which has

been utilized by outstanding works from several fields, like

deep learning [33] and hyperspectral image destriping [34].

However, it suffers from trivial solution and scale transfer

problems [35], and more importantly, it does not provide ex-

plicit function for out-of-sample data. Thus, we adopt another

regularization to preserve the Euclidean structure, termed as

Linear Embedding (LE), which can be formulated as below,

min
Wt

‖V−XtWt‖2F +R(Wt) (8)

Later we will prove that LE can provide the upper bound for

ABC and we can easily deal with out-of-sample data with

LE. Now we can incorporate LE to the general framework in

Eq. (6). Specifically, we choose squared loss for L, identity

3It is similar to bi-Lipschitz continuity from Mathematical Analysis, if we
drop ǫ1 and ǫ2. Thus we call it approximate bi-Lipschitz continuity.

function for g, ridge regularization and no constraint, which

leads to the overall objective function of UCMFH as follows

min
Wt,Ut,V

∑

t

αt(‖X
t −VUt‖2F + µ‖V −XtWt‖2F

+ γ(‖Ut‖2F + ‖Wt‖2F + ‖V‖2F ))

(9)

where αt denotes the weight of the t-th modality, µ is the

parameter to balance the trade-off between MF and LE, and

γ controls the complexity of the model to avoid overfitting.

B. Optimization

Eq. (9) is non-convex with all variables Wt,Ut,V together.

But fortunately, it is convex with respect to any one of them if

we keep the others fixed. Therefore we can utilize an iterative

algorithm for optimizing Eq. (9) until convergence as below.

Optimize V. Denote objective function as O, we obtain

∂O

∂V
= 2

∑

t

αt((VU
t −X

t)Ut′ + µ(V −X
t
W

t) + γV) (10)

By setting ∂O
∂V

= 0, we obtain the updating rule for V below:

V = (
∑

t

αtX
t(Ut′ +µW

t))(
∑

t

αt(U
t
U

t′ +µI+γI))−1
(11)

Optimize Ut. We can observe that all modalities are

decoupled when updating Ut. Hence we can optimize Ut

individually. The partial derivative with respective to Ut is

∂O

∂Ut
= 2αt(V

′(VUt −Xt) + γUt) (12)

By setting ∂O
∂Ut = 0, we have the updating rule for Ut below:

Ut = (V′V + γI)−1V′Xt (13)

Optimize Wt. Analogous to Ut, for each Wt, we can first

compute the partial derivative of O with respect to it as below

∂O

∂Wt
= 2αt(µX

t′(XtWt −V) + γWt) (14)

By setting ∂O
∂Wt = 0, we obtain the updating rule for Wt as:

Wt = µ(µXt′Xt + γI)−1Xt′V (15)

By iterating the steps listed above until the convergence is

achieved, we can obtain the final solution. The whole training

procedure of the UCMFH is summarized into Algorithm 1.

The above algorithm is for off-line training. We need to

provide explicit Hashing functions for out-of-sample data, i.e.,

we need to learn the linear projection Pt for the Hashing

function of each modality. Following the basic idea of CMFH,

given a sample xt from the t-th modality, we can obtain it

latent representation vt by optimizing the following problem

min
vt

‖xt − vtUt‖2F + µ‖vt − xtWt‖2F + γ‖vt‖2F (16)

It is not difficult to derive the closed-form solution as below,

vt = xt(Ut′ + µWt)(UtUt′ + (µ+ γ)I)−1 (17)

Now we can project xt to the shared space by Eq. (17). Then

after a sign function, we can obtain its Hashcodes. Clearly, by

comparing Eq. (17) to Eq. (4), we can obtain Pt as below

Pt = (Ut′ + µWt)(UtUt′ + (µ+ γ)I)−1 (18)
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Algorithm 1 Unsupervised CMFH

Input:

Training data Xt, #Hashcode k, parameters αt, µ, γ
Output:

Ut, Wt, V

1: Centralize Xt by the average value, ∀t;
2: Randomly initialize Ut, Wt and V, ∀t;
3: repeat

4: Update V by Eq. (11);

5: Update Ut by Eq. (13), ∀t;
6: Update Wt by Eq. (15), ∀t;
7: until Convergence.

8: Return Ut, Wt, V

So with Eq. (18), we have the modality-specific Hashing

function ht. Given data from any modality, we can generate

Hashcodes for it by the Hashing function, and then we can

perform cross-modality retrieval in a multimodal database.

Besides, we can observe that Wt in LE can also connect Xt

and V, we can use Wt as the linear projection alternatively.

C. Analysis

The time complexity for training UCMFH is as below.

The complexity for centralization (line 1) is O(ndt), for

initialization (line 2) is O(dkt + nk), for updating V (line

4) is O(ndkt + nk + dk2t + k3), for updating Ut (line 5)

is O((3nk2 + k3)t), for updating Wt (line 6) is O((2nd2 +
d3 + ndk)t). Thus, the overall complexity of Algorithm 1 is

O(ndt+nk+ndk+(ndkt+nk+dk2t+k3+(3nk2+2nd2+
k3 + d3 + ndk)t)r), where r is the number of iterations to

convergence. We can observe that the training time is linear

to the size of training data n. Therefore UCMFH can easily

handle large-scale training dataset. Generating Hashcodes for

an out-of-sample data by Eq. (4) needs O(dk), which is fast.

Another important issue we need to demonstrate is that

UCMFH can preserve the Euclidean structure of the original

features because it satisfies ABC. Based on Eq. (9) or Eq. (16),

we can see the latent representation vt for data xt satisfies

xt = vtUt + et
1
, vt = xtWt + et

2
(19)

where et1 and et2 are reconstruction errors for MF and LE

respectively. Based on Eq. (19), we have equations as below:

‖xt
i − xt

j − (et1i − et1j)‖F = ‖(vt
i − vt

j)U
t‖F

‖vt
i − vt

j‖F = ‖(xt
i − xt

j)W
t + et2i − et2j‖F

(20)

By the matrix norm properties ‖AB‖F ≤ ‖A‖F ‖B‖F and

‖A+B‖F ≤ ‖A‖F +‖B‖F , we obtain inequalities as below

1

‖Ut‖F
‖xt

i − xt
j‖F −

1

‖Ut‖F
‖et

1i − et
1j‖F

≤ ‖vt
i − vt

j‖F ≤ ‖Wt‖F‖x
t
i − xt

j‖F + ‖et2i − et2j‖F

(21)

which is equivalent to Eq. (7) if we set C1 = 1/‖Ut‖F , C2 =
‖Wt‖F , ǫ1(i, j) = ‖et

1i − et
1j‖F/‖U

t‖F , ǫ2(i, j) = ‖et
2i −

et
2j‖F . Therefore UCMFH can satisfy ABC. Furthermore, we

can also observe that LE provides the upper bound for ABC.
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Fig. 3: The distribution of ǫ1 and ǫ2.

After proving UCMFH can satisfy ABC, we still need to

investigate how well the approximation is, i.e., whether the

lower and upper bounds are tight. If the MF and LE are

perfect, i.e., et1 = et2 = 0 and ǫ1 = ǫ2 = 0, the bounds are

tight. However, they are usually imperfect in practice, and the

existence of ǫ1 and ǫ2 may relax the bounds, especially when

they are large. For example, if ǫ1 and ǫ2 are infinity, the bounds

will be dominated by the errors and become meaningless.

Thus we wish them to be small such that tight bounds can

be guaranteed. Fortunately, minimizing the objective function

in Eq. (9) and Eq. (16) can reduce ǫ1 and ǫ2 because they

aim to find vt with small reconstruction error. To demonstrate

this, we train 64-bit UCMFH on 5, 000 two-modality instances

sampled from NUS-WIDE dataset. For each instance pair

(oi,oj), we compute ǫ1(i, j) and ǫ2(i, j) for each modality.

To eliminate the influence of magnitude of input data, we

normalize input data to unit Euclidean length, i.e. we consider

the relative errors. The distribution of ǫ1 and ǫ2 is shown

in Fig. 3. We can observe that for most pairs, the relative

errors are quite small. More specifically, the relative errors

of more than 90% pairs fall into [0, 0.1]. Such small errors

indicate that the bounds in Eq. (21) are tight and UCMFH

can well preserve the Euclidean structure of original features

in practice. Moreover, if we keep increasing the length of the

Hashcodes, the MF and LE can become more precise, which

further reduces ǫ1 and ǫ2 and thus results in tighter bounds.

V. SUPERVISED CMFH

A. Overall Objective Function

In supervised scenario, the semantic label information is

given. Considering the goal of cross-modality retrieval is

to find the semantically related instances, we wish that the

latent representation can capture the category characteristics

at the same time. To achieve this goal, one effective way is

to jointly optimize the representation learning and classifier

learning problems [36]. Motivated by this basic idea, we can

incorporate some classifier-like loss functions with the CMFH.

In general, the loss functions can be summarized as follows,

min
V,f

c∑

j=1

ℓ(Y∗j , fj(V)) +R(fj) (22)

where f denotes a classifier, Y ∈ R
n×c is the label matrix

where yij = 1 if the i-th multimodal instance belongs to

the j-th category, otherwise yij = −1, and R(f) is the

regularization on the classifier parameters to avoid overfitting.
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Intuitively, if we use a linear classifier, minimizing above

loss function will result in V which is separatable between

categories with a hyperplane, i.e., instances from different cat-

egories will fall into different sides of a hyperplane. With this

property, we can obtain similar Hashcodes for the instances

from the same category but dissimilar Hashcodes for the ones

belonging to different categories. Obviously, such Hashcodes

can result in excellent cross-modality retrieval performance.

Now we can combine Eq. (22) with Eq. (6) for joint

optimization, which leads to the objective function for SCMFH

min
Ut,V,f

∑

t

αt(L(X
t, g(VUt)) +R(Ut,V))

+ µ(

c∑

j=1

ℓ(Y, fj(V)) +R(fj)), s.t. C(Ut,V, fj)
(23)

Now we can choose specific settings. We use squared

loss for L, identity function for g, ridge regularization for

R(Ut,V). For the classifier fj , we choose the linear form,

i.e., fj(v) = sign(vw′
j+bj) where wj ∈ R

1×k and bj are the

parameter for the classifier fj . To make V more separatable,

i.e., there is large margin between different categories, we

utilize the SVM-like loss function [37] and constraints. We

obtain the specific objective function for SCMFH as follows

min
Ut,V,wj ,bj

∑

t

αt(‖X−VU
t‖2F + γ(‖Ut‖2F + ‖V‖2F ))

+ µ

c∑

j=1

(
∑

i

ξij + C‖wj‖
2

F )

s.t. yij(viw
′

j + bj) ≥ 1− ξij , ξij ≥ 0

(24)

where αt and µ are the weight parameters, γ controls the

model complexity, and C is the trade-off parameter between

maximizing margin and minimizing the classification error.

B. Optimization

Like UCMFH, the optimization problem of SCMFH can be

worked out in an iterative manner until achieving convergence.

Optimize wj and bj . By fixing the others, the objective

function with respect to wj and bj can be written as follows,

min
wj ,bj

C‖wj‖
2

F +
∑

i

ξij

s.t. yij(vw
′
j + bj) ≥ 1− ξij , ξij ≥ 0

(25)

This is a standard SVM training problem with V as input

features and Y∗j as output labels. It can be effectively solved

by ready-made optimization tool, such as LIBLINEAR [38].

Optimize vi. It is obvious that the optimization problem

with respect to V is row-decoupled. So we can optimize

each row vi individually. By discarding the terms that are

not relevant to vi, the objective function can be rewritten as

min
vi

O =
∑

t

αt(viU
tUt′vi − 2viU

txt′

i + γviv
′
i)

+ µ

c∑

j=1

ξij , s.t. yij(vw
′
j + bj) ≥ 1− ξij , ξij ≥ 0

(26)

Algorithm 2 Supervised CMFH

Input:

Training data Xt, label Y,#Hashcode k,

parameters αt, µ, γ
Output:

Ut, V

1: Centralize Xt by the average value, ∀t;
2: Randomly initialize Ut, wj , bj and V, ∀t;
3: repeat

4: Update wj and bj by solving Eq. (25), j = 1, ..., c;
5: Update Ut by Eq. (13), ∀t;
6: Update V by solving Eq. (26) via Eq. (30) and (31);

7: until Convergence.

8: Return Ut, V

For convenience, we denote A =
∑

t αt(U
tUt′ + γI), and

B = 2
∑

t αtU
txt′

i . Then denote βj and φj as the Lagrange

multipliers for the constraint. We have Lagrange L for O as

L = viAv′
i − viB+ µ

c∑

j=1

ξij −

c∑

j=1

φjξj

−

c∑

j=1

βj(yij(viw
′
j + bj)− 1 + ξij)

(27)

Passing to the dual problem requires the two steps as below

∂L

∂ξj
= 0 ⇒ µ− βj − φj = 0 ⇒ 0 ≤ βj ≤ µ (28)

With the above identity, we formulate a reduced Lagrangian

L = viAv′
i − viB−

c∑

j=1

βj(yij(viw
′
j + bj)− 1)

= viAv′
i − viB− βYiWv′

i + βg′

(29)

where β = [β1, ..., βc], Yi = diag(yi1, ..., yic), W =
[w′

1, ...,w
′
c]
′, and g ∈ R

1×c with gj = 1− yijbj . Then taking

the derivative of the reduced Lagrangian with respect to vi,

∂L

∂vi

= 2viA−B′ − βYiW = 0

⇒ vi = (β∗YiW +B′)A−1/2

(30)

By substituting back in the reduced Lagrangian, we obtain

β∗ = max
β

βH− βMβ′, s.t. 0 ≤ βj ≤ µ (31)

where M = YiWA−1W′Y′
i/4 and H = −YiWA−1B/2+

g′. Such optimization problem can be solved by quadratic

programming technique. For example, we can use the Mat-

lab function quadprog4 for the optimization. The training

algorithm for the SCMFH is summarized into Algorithm 2.

Optimize Ut. When fixing the other variables, Eq. (24) is

equivalent to Eq. (9). Thus we can still use Eq. (13) for Ut.

The online coding for out-of-sample data is straightforward.

Because we do not have labels for the out-of-sample data, the

latent representation for xt is obtained by the MF as follows

min
vt

‖xt − vtUt‖2F + γ‖vt‖2F (32)

4http://cn.mathworks.com/help/optim/ug/quadprog.html
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and the projection for modality-specific Hashing function is

Pt = Ut(UtUt′ + γI)−1 (33)

C. Analysis

Algorithm 2 is more complicated because we adopt quadrat-

ic programming to optimize variables. Optimizing wj and bj
is a standard SVM training problem, whose theoretical time

complexity is O(n3
sv) in the worst case, where nsv is the

number of support vectors which is always far smaller than

n in practice. Besides, recent works, like Hash-SVM [39],

have markedly improve the training efficiency and scalability

of SVM. When optimizing vi, the most time-consuming

step is the quadratic programming for solving Eq. (31). But

fortunately, β has only c elements, where c is not large in

real-world dataset in most cases, and the time complexity is

polynomial to c. Thus, this step is also efficient. Besides,

solving Eq. (31) is irrelevant to n. Therefore, the overall

complexity to update V is linear to the number of rows, i.e., n.

In summary, the time complexity of Algorithm 2 is linear to n
and the number of iterations, which guarantee its scalability.

In addition, the time complexity for online coding for one

out-of-sample instance is O(dk), which is also very efficient.

VI. EXPERIMENT

A. Experiment Settings

1) Datasets: To demonstrate the efficacy of CMFH, we

adopt three benchmark datasets for cross-modality retrieval.

Wiki [40]. The Wiki dataset was collected from Wikipedia

webpages. It contains 2, 866 multimodal documents. Each

document has 1 image and a text with at least 70 words.

Each image is represented by a 128-dimensional bag-of-visual

word (BoW) feature [41] based on SIFT descriptors [42],

and each text is represented by a 10-dimensional topics’

vector generated by the latent Dirichlet allocation (LDA)

model [43]. There are 10 categories in this dataset and each

multimodal document is labeled by one of them. In cross-

modality retrieval, an image and a text are considered to be

semantically related when they belong to the same category.

NUS-WIDE [44]. This is a large-scale dataset collected

from the Web containing 269, 648 images and the corre-

sponding tags. It contains 81 concepts but some of them

are scarce. So we select the 10 most common concepts, and

thus we obtain 186, 577 images. Moreover, the 1, 000 most

frequent tags are selected. Each image is represented by a

500-dimensional SIFT BoW feature vector and and each text

is represented by an index vector of the selected tags. Different

from Wiki dataset, the image-text pair in NUS-WIDE dataset

is annotated by at least one of the ten concepts, and pairs

sharing at least one concepts are considered to be related [14].

MIRFLICKR [45]. This dataset consists of 25, 000 images

annotated by some labels from 38 unique labels. Each image

is described by a 100-dimensional SIFT BoW feature which

mainly encodes the surface texture information, and a 144-

dimensional CEDD feature [46] that focuses on color and

edge directivity. SIFT and CEDD are similar in texture space

but dissimilar in color space. Though this dataset contains

TABLE II: Description of benchmark datasets

Dataset Modality #Samples #Feat #Cls

Wiki image/text 2,866 128/10 10

NUS-WIDE image/text 186,577 500/1000 10

MIRFLICKR SIFT/CEDD 25,000 100/144 38

only images, the multimodal setting can be simulated by

using different visual features of images [47]. The features

are considered to be related if they share at least one labels.

To perform cross-modality retrieval, we can use one modal-

ity (like image, SIFT) as the query to retrieve data from the

other modality (like text, CEDD) by the Hamming ranking.

Some characteristics of the datasets are shown in TABLE II.

2) Baselines: We select several multimodal Hashing

methods as baselines for comparison. Cross-view Hashing

(CVH) [18], Inter-media Hashing (IMH) [14], Cross-modality

Similarity Sensitive Hashing (CMSSH) [20], Quantized Cor-

relation Hashing (QCH) [48], and Cluster-based Joint Fac-

torization Hashing (CBH) [49]. Above five methods are un-

superivsed. Semantic Correlation Maximization Hashing [15]

with sequential learning (SCMH), Kernel-based Supervised

Hashing for Cross View (KSH-CV) [50], and Spectral Mul-

timodal Hashing (SMH) [51]. Above three methods are su-

pervised. We implement CVH and CBH by ourselves because

their codes are not publicly available. For the other baseline

methods, the source codes are kindly provided by their authors.

3) Metrics: Following the standard settings in literatures,

like [14], [21], and etc, we adopt mean Average Precision

(mAP) as the numeric evaluation metrics. mAP has shown

good discriminative power and stability to evaluate the perfor-

mance of cross-modality retrieval. In general, a larger mAP

indicates better retrieval results that the instances which are

related to the query have higher rank. Given a query and a set

of R retrieved instances, the Average Precision is defined as

AP =
1

L

∑R

r=1
P (r)δ(r) (34)

where L is the total number of related instances in the retrieved

set, P (r) denotes the precision value (the ratio between the

number of related instances and the number of retrieved

instances) of top r retrieved instances, and δ(r) stands for

an indicator function which is equal to 1 if the r-th retrieved

instance is related to the query or 0 otherwise. Finally, by

averaging the AP value over all queries, we obtain the mAP.

We also adopt two performance curves for evaluation, i.e.,

Precision-Recall (PR) curve which reflects the precision at

different recall level, and precision curve which reflects the

change in precision with respect to the number of retrieved

instances. Both are widely adopted in Hashing evaluation [52].

4) Details: We randomly split the dataset to database and

query set. Specifically, we randomly select 25%, 2% and

20% instances from Wiki, NUS-WIDE and MIRFLICKR

respectively as the query set and the remained form the

database. Besides, considering the large scale of NUS-WIDE

and MIRFLICKR datasets, and the poor scalability of methods

like CVH and IMH (their complexity is quadratic to n), we

randomly select 5, 000 instances from database as the training
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TABLE III: mAP Comparison on Wiki.
Image Query v.s. Text Database Text Query v.s. Image Database

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

IMH [14] 0.2054 0.1986 0.1997 0.2026 0.2575 0.2494 0.2367 0.2399
CVH [18] 0.2041 0.1604 0.1296 0.1308 0.2122 0.1944 0.1337 0.1125

CMSSH [20] 0.2026 0.2113 0.2011 0.2084 0.2828 0.2632 0.2653 0.2714
QCH [48] 0.2338 0.2401 0.2454 0.2456 0.3221 0.3442 0.3477 0.3495
CBH [49] 0.2199 0.2232 0.2318 0.2341 0.2974 0.3108 0.3177 0.3255
UCMFH 0.2447 0.2536 0.2615 0.2652 0.6116 0.6298 0.6398 0.6477

SCMH [15] 0.2376 0.2404 0.2472 0.2517 0.3342 0.3527 0.3604 0.3548
KSH-CV [50] 0.2241 0.2195 0.2184 0.2207 0.3075 0.3069 0.3160 0.3117

SMH [51] 0.2301 0.2375 0.2464 0.2458 0.3284 0.3592 0.3612 0.3691
SCMFH 0.2587 0.2636 0.2801 0.2876 0.6322 0.6401 0.6574 0.6638
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Fig. 4: Performance curves on Wiki.

set. We train Hashing functions on the training set, then

generate Hashcodes for all instances in database and query

set with the learned Hashcodes, and finally the retrieval is

performed using the Hashcodes. This setting is also adopted

in [14]. In fact, since new instances keep coming into the

database all the time, the learned Hashing functions should

have good ability to handle the out-of-sample data. Therefore,

this setting can verify such ability of the Hashing methods.

When comparing CMFH to the baselines, we adopt the

following parameter settings. For UCMFH, we set µ = 100
and γ = 10−2. For SCMFH, we set µ = 1, γ = 10−2,

and C = 1. In the coming sections, we conduct empirical

analysis on parameter sensitivity, which demonstrates that both

UCMFH and SCMFH have superior and stable performance

with a wide range of parameter values on all three datasets.

Besides, we set αt = 1 for all modalities and R = 50 for AP.

Although the source codes for most baselines are provided,

it is not fair if we just use their default parameter settings.

Therefore we carefully tuned their parameters and the best

results are reported. In addition, to remove the influence of

any randomness caused by initialization, data split, and etc.,

we perform 25 repeated runs for all methods and the average

results are reported. All experiments are carried out on a

computer which has Intel Core i7-2600 CPU and 16GB RAM.

B. Retrieval Performance

1) Wiki: The mAP comparison on Wiki dataset with dif-

ferent Hashcode length is summarized in TABLE III, and the

corresponding performances curves are plotted in Fig. 4. We

observe that UCMFH and SCMFH markedly outperform the

other baseline methods in both unsupervised and supervised

scenarios. In addition, the results reveal some points below.

First, UCMFH is even superior to the supervised baselines.

The experimental results indicate that connecting different

modalities is a very important task in cross-modality retrieval.

By learning unified Hashcodes for different modalities of one

instance in the shared latent semantic space through CMFH

framework, we can build strong and effective connection

between modalities. On the other hand, MSH methods, such

as SCMH, which can only build weak connection such that the

distance computing between Hashcodes, is much less effective

though supervised information is taken into consideration. This

result demonstrates that the proposed CMFH framework is

superior to MSH and IH frameworks for multimodal Hashing.

Second, both UCMFH and SCMFH have better results with

longer Hashcode length. This is reasonable because longer

Hashcodes can encode more information which improves the

performance. Besides, with larger k, the factorization can be

more precise. For UCMFH, the reconstruction errors e1 and

e2 become smaller, which provides tighter lower and upper
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TABLE IV: mAP Comparison on NUS-WIDE.
Image Query v.s. Text Database Text Query v.s. Image Database

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

IMH [14] 0.3987 0.4029 0.4015 0.3961 0.4141 0.4238 0.4256 0.4016
CVH [18] 0.4417 0.4652 0.4711 0.4649 0.4561 0.4659 0.4719 0.4821

CMSSH [20] 0.4621 0.4552 0.4597 0.4469 0.5031 0.4871 0.4853 0.4698
QCH [48] 0.5121 0.5284 0.5306 0.5381 0.5429 0.5599 0.5702 0.5721
CBH [49] 0.4802 0.4921 0.4949 0.5073 0.5033 0.5290 0.5372 0.5435
UCMFH 0.5532 0.5620 0.5699 0.5813 0.6521 0.6877 0.7092 0.7177

SCMH [15] 0.4952 0.5038 0.5212 0.5339 0.6021 0.6215 0.6304 0.6498
KSH-CV [50] 0.4687 0.4805 0.4832 0.4851 0.5118 0.5429 0.5494 0.5328

SMH [51] 0.5151 0.5277 0.5261 0.5490 0.5902 0.6133 0.6401 0.6528
SCMFH 0.5517 0.5825 0.5974 0.6103 0.6445 0.6981 0.7268 0.7340
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Fig. 5: Performance curves on NUS-WIDE.

bounds (smaller ǫ1 and ǫ2) such that the Euclidean structure

can be better preserved. For SCMFH, more latent factors can

provide more freedom, and thus the latent representation can

better capture the category characteristics. On the other hand,

we can observe the performance of some methods degrades

with longer Hashcodes, like CVH. In addition, the PR curves

of some methods look strange, for example, CVH for text

query to image database with 64 bits performs like random

guess. This phenomenon has also been observed in several

literatures [21], [53], [54], [55]. In fact, these methods have

orthogonality constraint on the projection directions so that

each bit shows no correlation to each other. It is well known

that for most real-world datasets, most of the information

is contained in top few projections [55]. Thus, the first few

projection directions may have higher variance and more in-

formation such that their corresponding bits are discriminative.

However, with longer Hashcodes, the orthogonality constraint

will force them to progressively pick the directions with little

information, which leads to meaningless and ambiguous bits.

Therefore, long Hashcodes are dominated by the indiscrimina-

tive bits which may markedly degrade the quality of Hashcode.

2) NUS-WIDE: The mAP of different methods is shown

in TABLE IV and the corresponding performance curves

are presented in Fig. 5. The results also demonstrate the

superiority of UCMFH and SCMFH to the baseline methods.

In real-world database, it is always impossible to learn

Hashing functions with the whole database as the training set

because of the limitation of computational resource, such as

memory. Besides, new data keeps coming into the database

with time and it is not reasonable to produce their Hashcodes

by retraining the model with all data. Moreover, in multimodal

scenario, instances with partially missing modalities are very

common. Therefore, a practical multimodal Hashing methods

should have effective and explicit Hashing functions which

can generate Hashcodes for the out-of-sample data which may

have partially missing modalities. In the experiment on NUS-

WIDE dataset, we select a small portion of instances from

database as the training set and the Hashcodes of the whole

database and the query are generated by the learned Hashing

functions. This experimental setting is very similar to the real-

world scenario and it can test the effectiveness of the Hashing

functions. The superior performance of UCMFH and SCMFH

validates that they are able to learn effective Hashing functions

for out-of-sample multimodal data, which demonstrates their

excellent ability to manage large-scale database in real world.

Another interesting observation is that the mAP improves

with larger margin for text query task when we increase

Hashcode length. The improvement for text query task on

NUS-WIDE is 6.56% and 8.95% for UCMFH and SCMFH

respectively when k increases from 16 to 128, while the
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TABLE V: mAP Comparison on MIRFLICKR.
SIFT Query v.s. CEDD Database CEDD Query v.s. SIFT Database

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

IMH [14] 0.5874 0.5899 0.5941 0.5948 0.5704 0.5821 0.5810 0.5772
CVH [18] 0.5942 0.6017 0.6021 0.5874 0.5699 0.5748 0.5763 0.5729

CMSSH [20] 0.5856 0.5911 0.5932 0.5957 0.5602 0.5719 0.5803 0.5764
QCH [48] 0.5981 0.5988 0.6021 0.6039 0.5794 0.5802 0.5871 0.5995
CBH [49] 0.5922 0.5981 0.5926 0.5999 0.5811 0.5826 0.5849 0.5920
UCMFH 0.6155 0.6221 0.6299 0.6315 0.6424 0.6563 0.6649 0.6697

SCMH [15] 0.6142 0.6187 0.6197 0.6234 0.6361 0.6422 0.6437 0.6475
KSH-CV [50] 0.5891 0.6031 0.6040 0.5978 0.5922 0.5975 0.6020 0.6037

SMH [51] 0.6002 0.6130 0.6209 0.6251 0.6205 0.6387 0.6421 0.6476
SCMFH 0.6221 0.6295 0.6367 0.6433 0.6516 0.6643 0.6720 0.6792
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Fig. 6: Performance curves on MIRFLICKR.

improvement for the other task and datasets is much less.

One possible reason is that the text feature in NUS-WIDE

is high-dimensional and sparse. For such features, the matrix

factorization may be imprecise with small k [56], which limits

the performance of CMFH framework for short Hashcodes.

Fortunately, this problem can be avoided in real-world ap-

plications. Considering the low storage cost of Hashcodes,

appropriately long Hashcodes (say, more than 64 bits) are

always utilized in practice. Combining our analysis for Wiki,

it is obvious that the power of CMFH can be fully exploited.
3) MIRFLICKR: In TABLE V we list the mAP of different

methods, and in Fig. 6 we plot the curves. Consistent with the

results in the above datasets, UCMFH and SCMFH perform

better than all the baseline methods with observable margin.

Combining the above experiments, we can observe that

the supervised methods can achieve better performance, e.g.,

SCMFH v.s. UCMFH, SCMH v.s. the other baselines. In fact,

our goal in cross-modality retrieve is to obtain semantically

related instances. Therefore, with semantic supervision, the

learned Hashing function is able to better exploit the seman-

tic relationship between instances and help build connection

between modalities, which can lead to better retrieval result.

C. Other Issues

1) Parameter Sensitivity Analysis: In both UCMFH and

SCMFH, we have two important model parameters, µ as the

trade-off parameter and γ to control the model complexity. We

investigate how sensitive two methods are to the parameters.

When analyzing one parameter, we fix the other as the value

we introduced above. The mAP of two methods with respect

to the different parameter values for three datasets is plotted in

Fig. 7. Here we only show the results with 64-bit Hashcode.

In fact, the results for the other Hashcode lengths have similar

curves. We have the following observations from the results.

The weight parameter µ controls the influence of different

parts on the objective function. For UCMFH, if µ is too small

(say, µ < 0.01), the optimization algorithm prefers to reduce

the error in MF (i.e., e1) while it may increase the error in

LE (i.e., e2), which will loose the upper bound in Eq. (21). If

so, the Euclidean structure cannot be well preserved because

similar instances may have dissimilar latent representation. On

the other hand, if µ is too large (say, µ > 106), we have tight

upper bound but loose lower bound because now the algorithm

focus on reducing e2 in LE, which makes dissimilar instances

to have similar latent representation. For SCMFH, the analysis

is analogous. The category characteristics cannot be well

captured given a too small µ while the Hashing function will

be imprecise if µ is too large. Fortunately, it is not difficult

to choose proper value for µ because UCMFH performs

superiorly and steadily when µ ∈ [10−1, 103] and SCMFH

achieves satisfactory performance during µ ∈ [10−1, 102].
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Fig. 7: Parameter Sensitivity Analysis. Dashed lines are UCMFH and solid lines are SCMFH.
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Fig. 8: Effect of training set size.

The parameter γ controls the complexity of the models. If γ
is too small, the model may overfit the training data and thus

has large generalization error. On the other hand, if γ is too

large, the model becomes under-fitted because it is required to

be very simple. The results demonstrates that we can choose

γ ∈ [10−5, 10−2] for UCMFH and γ ∈ [10−4, 10−1] for

SCMFH to achieve the satisfactory and stable performance.

Moreover, we’d like to highlight the results in a special case

where µ = 0. In this setting, our objective function degenerates

to the general CMFH. Even so, CMFH (in this situation

UCMFH and SCMFH are equivalent) achieves much better

results than most baseline methods, which again demonstrates

the effectiveness of CMFH to build strong connection between

modalities and validates the superiority of the novel CMFH

framework to the MSH and IH frameworks. Besides, another

important observation is that the best results of UCMFH and

SCMFH are much better than the ones when µ = 0. Specif-

ically, general CMFH cannot preserve Euclidean structure in

unsupervised scenario or exploit the semantic label informa-

tion in supervised scenario because it only has CMF [27].

In UCMFH, we impose LE such that the Euclidean structure

can be preserved. And in SCMFH, SVM-like loss function is

incorporated to take the label information into consideration.

The results verify that such extensions can indeed fix these

flaws and make observable improvement on general CMFH.

2) Effect of Training Set Size: Now we investigate the effect

of training set size on UCMFH and SCMFH. The first aspect

is about the retrieval accuracy. On two large datasets, NUS-

WIDE and MIRFLICKR, we change the size of training set

and the corresponding mAP is plotted in Fig. 8. Here we can

draw two conclusions. Firstly, when the training set is small

(say, less than 2, 500), increasing its size can markedly im-

prove the mAP of both UCMFH and SCMFH. This is because

more training data can provide more information such that the

model better captures the characteristics of the dataset which
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Fig. 9: Convergence study.

result in better performance. Secondly, keeping increasing the

size after 5, 000 does not have significant influence on the

result. In fact, given enough data (say, 5, 000 to 10, 000), the

model is well trained and extra data is redundant. Moreover,

this shows the stabilization of the Hashing function learned by

the CMFH framework using reasonably a small training set.

The second is about the training time. We plot the time cost

(in seconds) for each iteration of the optimization algorithms

for UCMFH and SCMFH with different training set size in

Fig. 8. We can observe that the cost of Algorithm 1 and 2 is

linear to the training set size, which is consistent with our the-

oretically analysis. This property indicates that both algorithms

are scalable and able to deal with large-scale datasets. Besides,

training SCMFH is much slower than training UCMFH. This

is caused by the quadratic programming to solve Eq. (31).

Fortunately, we can observe the optimization is independent

for each row of V. Therefore, it is easy to use some parallel

computing techniques for speeding up the training process.

3) Convergence Study: Since we use iterative algorithms

for optimization, we empirically check the convergence prop-

erty. In Fig. 9, we plot the objective function value (averaged

by the number of training data) with respect to the number of
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iterations. The value can decrease steadily with more iterations

and can converge within 50 iterations, which validates the

effectiveness of Algorithm 1 and 2. By combining the results

in Fig. 8, we can see the efficiency of the Algorithm 1 and 2.

VII. CONCLUSION

This paper focuses on generating Hashcodes for multimodal

data for cross-modality retrieval. Different from existing MSH

and IH frameworks, we propose a novel CMFH framework

for multimodal Hashing, whose key idea is to learn unified

Hashcodes for different modalities of one instance in the

shared latent semantic space. We adopt CMF to build strong

connection between heterogeneous modalities. Besides, we

extend CMFH framework in unsupervised scenario (UCMFH)

where we integrates LE with CMFH such that the learned

representation can well preserve the Euclidean structure, and

in supervised scenario (SCMFH) where we impose a classifier-

like loss function to exploit the semantic label information.

We propose effective and efficient learning algorithms for

the optimization of UCMFH and SCMFH and the theoretical

analysis is also given. We conduct extensive experiment on

three multimodal datasets. The cross-modality retrieval results

demonstrate that both UCMFH and SCMFH can outperform

the state-of-the-art Hashing methods for the multimodal data.
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